A universal model for dynamical systems with quasi-discrete spectrum
نویسندگان
چکیده
منابع مشابه
Quantum Dynamical Systems with Quasi–Discrete Spectrum
We study totally ergodic quantum dynamical systems with quasi–discrete spectrum. We investigate the classification problem for such systems in terms of algebraic invariants. The results are noncommutative analogs of (a part of) the theory of Abramov. Supported in part by the National Science Foundation under grant DMS–9801612
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولStructural Properties of Universal Minimal Dynamical Systems for Discrete Semigroups
We show that for a discrete semigroup S there exists a uniquely determined complete Boolean algebra B(S) the algebra of clopen subsets of M(S). M(S) is the phase space of the universal minimal dynamical system for S and it is an extremally disconnected compact Hausdorff space. We deal with this connection of semigroups and complete Boolean algebras focusing on structural properties of these alg...
متن کاملA model function for polynomial rates in discrete dynamical systems
In this paper we construct a one-dimensional map with a non hyperbolic fixed point at zero for which the orbits converging to zero and the solution of the associated variational equation can be determined explicitly. We extend the construction to parameterized systems where the fixed point undergoes bifurcations. Applications are indicated to heteroclinic orbits that connect a hyperbolic to a n...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1969
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1969-12347-5